
TPM2137
(author: q3k, presented by: implr)



TPM2137 (q3k)

This challenge is about FPGAs and their bitstreams.

● Teams are given a bitstream for an Lattice iCE40 device that implements a 
simple password checker

● This is an offline reverse engineering challenge (the flag is encoded into the 
bitstream)

● The device has UART input for the password and simple green/red LED output
● If the green LED lights up, flag is correct



TPM2137 (q3k)



TPM2137 (q3k)

A lot has happened around reverse engineering FPGA bitstreams in recent years.

● iCE40 bitstreams have been reverse engineered by Project IceStorm 
http://www.clifford.at/icestorm/

● IceStorm includes iceunpack/icebox_vlog tools that can transform bitstream 
files back to structural Verilog
○ (basically muxes, AND/OR/NOT gates and flip-flops)

● Open-source formal verification tools such as SymbiYosys have appeared

http://www.clifford.at/icestorm/


TPM2137 (q3k)



TPM2137 (q3k)

How to solve the task (dynamically but manually):

● First, convert the bitstream to Verilog with project IceStorm
● Now, we have to analyze the resulting circuit
● The input is in the form of UART waveforms — we need to get rid of the UART 

circuit and focus on the actual checker circuit
● We need a testbench that emits UART waveforms — easy enough to do in 

Verilator
● Since the whole circuit is synchronous (using externally supplied clock), we can 

visualize the state of the circuit by showing values of all flip flops on all clock 
cycles



TPM2137 (q3k)

It looks something like this:

● By varying UART input bytes, we can find the flops storing the input
● The blue lines don’t depend on UART byte values and are likely counters



TPM2137 (q3k)

● Once the input flops are identified, we can replace them with external inputs to 
interface with the password checker directly
○ We now know the mapping of an inputted passphrase bit into flop 

name.
● After this substitution and removing the now-dead UART circuit, we’re left with a 

combinatorial circuit
● It is now enough to convert the circuit to a set of SMT2 equations (eg. using 

yosys-smtbmc or SymbiYosys), add an assert on the green LED value, and use 
SMT2 solver to find the correct input (which is the flag)
○ If you know angr, this technique might be familiar



TPM2137 (q3k)

How to solve the task (statically but automatically):

Use Yosys to simplify and convert circuit to JSON:

yosys -p 'read_verilog challenge.v; synth -noabc; write_json challenge.json'

Now, we can write some Python to analyze the JSON for us!

This is of course unnecessary, but it’s always good to explore RE 
automation, even during CTFs!



TPM2137 (q3k)

Write Python automation to:
● Recover flag FFs by traversing combinatorial logic from green LED
● Solve flag FFs by using Z3 (64 bits of flag data)
● Recover bit shift registers by finding edges that connect FFs

○ There are 8 8-bit shift registers, one for each bit of the given flag
● Find selectors for shifting in UART into shift registers

○ Selectors are combinatorial logic to check a bit counter against [0...7], to 
direct UART data into the corresponding shift register

● Find counter bits (3 FFs) that drive shift register selectors
● Try all possible orders of counter bits (3! == 6) to interpret shift registers as 

particular bit numbers
○ This gives us 6 possible flag values, one of them is correct!
○ We could determine the order of bits, but that requires recovering adders.



TPM2137 (q3k)



TPM2137 (q3k)

The design was dead simple (we didn’t want the task to be too complex):

● Make a simple standard UART receiver circuit
● Fetch the UART input to registers
● Compare the registers for equality with hardcoded “wanted” values, connect 

output to LED
● Synthesize & implement with yosys & nextpnr
● While the original check was a simple AND of equality comparisons, they will 

get converted to LUTs (look-up tables) by FPGA implementation, somewhat 
complicating the task



TPM2137 (q3k)



TPM2137 (q3k)

We made this challenge to showcase hardware reverse engineering techniques 
and open source EDA tools.

● Just because something is implemented in hardware doesn’t mean it’s secure
○ Cisco CVE-2019-1649

● FPGA bitstreams can be dumped, silicon can be analyzed (significantly harder)
○ Bitstream analysis possible using open source tools and ad-hoc tooling

■ … but there’s no fully automated tooling yet, maybe let’s write some? :)

● Powerful formal verification tools exist to help with analyzing circuits (and can 
be used to find inputs satisfying requested conditions)



TPM2137 (q3k)

Challenge sources and automated solver:

https://github.com/q3k/TPM2137



Thanks!


