TPM2137

(author: q3k, presented by: implr)

TPM2137 (q3K)

This challenge is about FPGAs and their bitstreams.

e Teams are given a bitstream for an Lattice iCE40 device that implements a
simple password checker

e This is an offline reverse engineering challenge (the flag is encoded into the
bitstream)

e The device has UART input for the password and simple green/red LED output

e If the green LED lights up, flag is correct

TPM2137 (q3K)

RadomSemi™
Engineering Your Budget

TPM2137

Secure Passkey Verification

Offering the best balance of cyber and price, e Industry standard UART idle-high

the TPM2137 offers a simple yet secure receive-only interface at 115200 baud.
solution for password and secret checking in e Single 12MHz clock source.

your application. e Simple ‘ok’/’'wrong’ LED output pins,

active low.
RadomSemi™ offers full customizability on e Based on Truly Unhackable™ FPGA
the password that the device verifies, as long Technology.

as the password is exactly 8 characters.

Refer to the TPM2137 Secure Passkey

TPM2137 (q3K)

A lot has happened around reverse engineering FPGA bitstreams in recent years.

e iCE40 bitstreams have been reverse engineered by Project lceStorm
http://www.clifford.at/icestorm/

e |ceStorm includes iceunpack/icebox_vlog tools that can transform bitstream
files back to structural Verilog
o (basically muxes, AND/OR/NOT gates and flip-flops)

e Open-source formal verification tools such as SymbiYosys have appeared

http://www.clifford.at/icestorm/

TPM2137 (q3K)

wire n390, n391, n392, n393, n394, n395, n396, n397, n398, n399;
wire n400, n401, n402, n403, n404, n405, n406, n407, n408, n409;
wire n410, n411, n412, n413, n414, n415, n416, n417, n418, n419;
wire n420, n421, n422, n423, n424, n425, n426, n427, n428, n429;
wire n430, n431, n432, n433, n434, n435, n436, n437, n438, n439;
wire n440, n441, n442, n443, n444, na4s;

regn5=0, n6 =0, n8=0, N9 =0, n106 =0, n11 =0, n12 =0, n14 = 0, n17 = 0, ni8 = 0;
regni9 = 0, n21 =0, n22 =0, n23 =0, Nn24 = 0, nN26 = 0, n28 = 6, n29 = 0, n31 = O;

reg n39 = 0, n40 = 0, n27 = 0;

regn32 =0, n34 =0, n35 =0, n36 =0, n37 =0, n4l =0, n42 = 0, n43 = 0;

reg nd5 = 0, n47 = 0, n48 = 0, n49 = 0, n52 = O, n53 = 0, n55 = O, n56 = O, n57 = O, n58 = 0]
reg n59 = 6, n6@ = 0, n73 = 0, n86 = O, n88 = 0, N9O = 0, n92 = O, n93 = 0;

reg n62 = 0, n63 = 0, n64 = 0, Nn65 = O, Nn67 = O, N68 = O, N69 = B, n70 = O;

/* CARRY 13 14
/* CARRY 13 14
/* CARRY 16 14
/* CARRY 16 14
/* CARRY 13 19

*/ (n133 & n72) | ((n133 | n72) & ni181);
*/ (n177 & n72) | ((n177 | n72) & n183);
*/ (n215 & 1'b0) | ((n215 | 1'b0) & n354);
*/ (n72 & n206) | ((n72 | n206) & n218);
*/ (n83 & n72) | ((n83 | n72) & n220);

/* CARRY 13 14 */ (n131 & 1'b6O) | ((n131 | 1'bO) & n393);
/* CARRY 13 14 */ (n178 & n72) | ((n178 | n72) & n180);
/* CARRY 13 14 4 */ (n72 & n175) | ((n72 | n175) & n182);

assign n182
assign nls4
assign n221
assign n219
assign n193
assign n222
assign ni181
assign n183

NORENOOILW

/* FF 14 14 5 */ always @(posedge clk) if (n74) n178 <= n3 ? 1'b0 :@ n223;

/* FF 12 12 5 */ always @(posedge clk) if (n1) n69 <= n3 ? 1'b0 : n224;

/* FF 13 21 3 */ always @(posedge clk) if (n4) n156 <= n3 ? 1'b0 : n225;

/* FF 15 14 0 */ always @(posedge clk) if (n137) n205 <= n3 ? 1'b0 : n226;
/* FF 15 11 2 */ always @(posedge clk) if (n1) n196 <= n3 ? 1'b0 : n227;

/* FF 13 10 4 */ always @(posedge clk) if (n1) n109 <= n3 ? 1'b0 : n228;

/* FF 13 16 6 */ always @(posedge clk) if (n135) n136 <= 1'b0 ? 1'b0 : n229;
/* FF 14 12 4 */ assign n163 = n230;

/* FF 12 12 1 */ assign n66 = n231,

B FF 13 21 7 */ always @(posedge clk) if (n4) n159 <= n3 ? 1'b® : n232;

TPM2137 (q3K)

How to solve the task (dynamically but manually):

e First, convert the bitstream to Verilog with project lceStorm

e Now, we have to analyze the resulting circuit

e The inputis in the form of UART waveforms — we need to get rid of the UART
circuit and focus on the actual checker circuit

e \We need a testbench that emits UART waveforms — easy enough to do in
Verilator

e Since the whole circuit is synchronous (using externally supplied clock), we can
visualize the state of the circuit by showing values of all flip flops on all clock
cycles

TPM2137 (q3K)

It looks something like this:

e By varying UART input bytes, we can find the flops storing the input
e The blue lines don’'t depend on UART byte values and are likely counters

TPM2137 (q3K)

e Once the input flops are identified, we can replace them with external inputs to
interface with the password checker directly
o We now know the mapping of an inputted passphrase bit into flop

name.

e After this substitution and removing the now-dead UART circuit, we're left with a
combinatorial circuit

e Itis now enough to convert the circuit to a set of SMT2 equations (eg. using
yosys-smtbmc or SymbiYosys), add an assert on the green LED value, and use
SMT?2 solver to find the correct input (which is the flag)
o If you know angr, this technique might be familiar

TPM2137 (q3K)

How to solve the task (statically but automatically):

Use Yosys to simplify and convert circuit to JSON:

yosys -p 'read verilog challenge.v; synth -noabc; write json challenge.json'

Now, we can write some Python to analyze the JSON for us!

This is of course unnecessary, but it’s always good to explore RE
automation, even during CTFs!

TPM2137 (q3K)

Write Python automation to:
e Recover flag FFs by traversing combinatorial logic from green LED
e Solve flag FFs by using Z3 (64 bits of flag data)
e Recover bit shift registers by finding edges that connect FFs
o There are 8 8-bit shift registers, one for each bit of the given flag
e Find selectors for shifting in UART into shift registers
o Selectors are combinatorial logic to check a bit counter against [0...7], to
direct UART data into the corresponding shift register
e Find counter bits (3 FFs) that drive shift register selectors
e Try all possible orders of counter bits (3! == 6) to interpret shift registers as
particular bit numbers
o This gives us 6 possible flag values, one of them is correct!
o We could determine the order of bits, but that requires recovering adders.

TPM2137 (q3k

l“
| 1!, L : I . ™ '- 1 w

. n3sz: @ _ chain @:
' | n373: @ dffs: n273, n393, n279, n271, n382, n339, n389, n2ll
L | = n3gl: @ values: " 1; 1)l s 1, 1, 1,1
SSk@anathema “/Prgjec:ts.f‘ml:tf—tas.k—zall"afsolutinrl 3 mgke connectivity n393 -> n279 chain 1:
*’ETFive'?v'l;gpgfbmf’wth°" solve.py “challenge. json connectivity n382 -> n339 dffs: n354, n249, nd@3, nd22, n3@1, ndl7, n362, n219
ggl;gd ’T?ig- . connectivity n279 -> n271 values: @, @, @8, 1, @, 1, 8, @
g dff bits: R :
n27a: 1 y connectivity n271 -> n382 chain 2:
n339: 1 ' 'Qconnectlwtg n339 -> n3@9 dffs: n268, n369, n258, n334, n348, n343, n374, n192
L n27: | connectivity nd@3 -> n422 values: @, 1, 8, @8, 1, 1, 1, 1
N n382: 1 connectivity n381 -> nd1? chain 3:
3 n3e9: 1 connectivity n389 -> n211 - dffs: n388, n383, n341, n232, n224, n245, n238, nl9a
ndzz: 1 connectivity n273 -> n393 values: 1, 1, 8, 1, 8, 8, 8, @
”gi-{'; ; connectivity n374 -> n192 chain 4:
2393: 1 connectivity nd28 -> n273 dffs: nb8, n392, n272, n266, n257, n267, n248, nld6
naz: 1 ‘connectivity n343 -> n374 values: 1, @, 1, 1, 1, 1, 8, @
o273 1 connectivity n334 -> n348 chain 5:
n3rd: 1 connectivity n341 -> n232 . dffs: nd28, n328, n317, n327, n384, n373, n381, nl17?
n34s: 1 connectivity n348 -> n343 values: @, 8, 8, 8, 8, 8, 8, 1
ngzg: } connectivity n268 -> n369 chain 6:
n3d3; connectivity n272 -> n266 n dffs: n274, n368, n353, n377, n269, n378, n276, nikd
”gggf i connectivity n79 -> né3 values: @, 1, 8, 1, 1, 8, 1, @
268,‘1 connectivity n38l -> n117 chain 7:
5. connectivity n392 -> n272 dffs: n231, n223, nd38, nddd, n239, n358, n351, nl78
nil?: 1 rA%s .
n272: 1 connectivity n379 -> n385 " wvalues: B, B8, B, 8, B, 8, 8, @
n3ss: 1 connectivity n377 -> n269 bit counter {nid, n6l, nS2, n71, n72, ni2, nil, nl13, n28, n24, n221, nl@, n34>
n269: 1 connectivity n378 -> n276 bit counter (pruned) {nid, n?1, n34:
¢on2e: 1 connectivity n388 -> n383 attempting bit counter order (nid, n71, n34)
n3g3: 1 connectivity n257 -> n267 flag: '‘xlchxBeMix@fkit,)'
”gg;; i connectivity n274 -> n368
N380¢ connectivity n353 -> n377 attempting bit counter order (nild, n34, n71)
n377: 1 RS
: connectivity n266 -> n257 flag: '‘wxlahx@e+wx@fmytNI'
n257: 1 ridy
. n239: @ connectivity ndd@ -> n239
ni7a: 8 . connectivity n351 -> n173 attempting bit counter order <(n71, nid, n34)
4 n3s5i: @ _connectivity n358 -> n351 flag: 'd42q3k!:>’
n3ss: @ iconnectivity n239 -> n358
ndda: 8 connectivity nd38 -> nd4@ attempting bit counter order ¢(n71, n34, nid)
nzz3: @ connectivity n231 -> n223 flag: 'RTQUmANAI'
nz3l: @a T
3B B connectivity n81 -> n231
na5d: B connectivity n223 -> nd38 attempting bit counter order (n34, nid, n?71)
\ n24s: @ “connectivity n253 -> n354 flag: '&2+3y'ra’
n25s: @ connectivity n354 -> n249
W N334 0 ¢ connectivity n369 -> n258 attempting bit counter order (n34, n71, nid)
) connectivity n258 -> n334 flag: 'FTMUyAta’

connectivity n24S -> n238 g3k@Banathema “/Projectsfuctf-task-2819/solution $ [
connectivity n224 -> n24s e eee—— | e -

‘connectivitg n333 -> n268

TPM2137 (q3K)

The design was dead simple (we didn’t want the task to be too complex):

e Make a simple standard UART receiver circuit

e Fetch the UART input to registers

e Compare the registers for equality with hardcoded “wanted” values, connect
output to LED

e Synthesize & implement with yosys & nextpnr

e While the original check was a simple AND of equality comparisons, they will
get converted to LUTs (look-up tables) by FPGA implementation, somewhat
complicating the task

TPM2137 (q3K)

reg [7:0] want_0O
reg [7:0] want_1
reg [7:0] want_2
reg [7:0] want_3
reg [7:0] want_4
reg [7:0] want_5
reg [7:0] want_6
reg [7:0] want_7

8'b01111110,
8'b00110001,
8'b00001100,
8'b10011000,
8'b000O0OO1L,
8'bititiitl;
8'b11111100,
8'b00OOOEOOOO,

wire open = (want_0@ == given_0) &&
(want_1 == given_1) &&
(want_2 == given_2) &&
(want_3 == given_3) &&
(want_4 == given_4) &&
(want_5 == given_5) &&
(want_6 == given_6) &&
(want_7 == given_7),

assign led_green = !open,
assign led_red = open,

TPM2137 (q3K)

We made this challenge to showcase hardware reverse engineering techniques
and open source EDA tools.

e Just because something is implemented in hardware doesn’t mean it's secure
o Cisco CVE-2019-1649

e FPGA bitstreams can be dumped, silicon can be analyzed (significantly harder)
o Bitstream analysis possible using open source tools and ad-hoc tooling
m ... but there’s no fully automated tooling yet, maybe let's write some? :)

e Powerful formal verification tools exist to help with analyzing circuits (and can
be used to find inputs satisfying requested conditions)

TPM2137 (q3K)

Challenge sources and automated solver:

https:llgithub.com/q3k/TPM21/§7

